Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies.
نویسندگان
چکیده
The emergence of drug resistance to traditional chemotherapy and newer targeted therapies in cancer patients is a major clinical challenge. Reactivation of the same or compensatory signaling pathways is a common class of drug resistance mechanisms. Employing drug combinations that inhibit multiple modules of reactivated signaling pathways is a promising strategy to overcome and prevent the onset of drug resistance. However, with thousands of available FDA-approved and investigational compounds, it is infeasible to experimentally screen millions of possible drug combinations with limited resources. Therefore, computational approaches are needed to constrain the search space and prioritize synergistic drug combinations for preclinical studies. In this study, we propose a novel approach for predicting drug combinations through investigating potential effects of drug targets on disease signaling network. We first construct a disease signaling network by integrating gene expression data with disease-associated driver genes. Individual drugs that can partially perturb the disease signaling network are then selected based on a drug-disease network "impact matrix", which is calculated using network diffusion distance from drug targets to signaling network elements. The selected drugs are subsequently clustered into communities (subgroups), which are proposed to share similar mechanisms of action. Finally, drug combinations are ranked according to maximal impact on signaling sub-networks from distinct mechanism-based communities. Our method is advantageous compared to other approaches in that it does not require large amounts drug dose response data, drug-induced "omics" profiles or clinical efficacy data, which are not often readily available. We validate our approach using a BRAF-mutant melanoma signaling network and combinatorial in vitro drug screening data, and report drug combinations with diverse mechanisms of action and opportunities for drug repositioning.
منابع مشابه
Protein Drug Targets of Lavandula angustifolia on treatment of Rat Alzheimer᾽s Disease
Different treatment strategies of Alzheimer's disease (AD) are being studied for treating or slowing the progression of AD. Many pharmaceutically important regulation systems operate through proteins as drug targets. Here, we investigate the drug target proteins in beta-amyloid (Aβ) injected rat hippocampus treated with Lavandula angustifolia (LA) by proteomics techniques. The reported study sh...
متن کاملProtein Drug Targets of Lavandula angustifolia on treatment of Rat Alzheimer᾽s Disease
Different treatment strategies of Alzheimer's disease (AD) are being studied for treating or slowing the progression of AD. Many pharmaceutically important regulation systems operate through proteins as drug targets. Here, we investigate the drug target proteins in beta-amyloid (Aβ) injected rat hippocampus treated with Lavandula angustifolia (LA) by proteomics techniques. The reported study sh...
متن کاملDrugComboRanker: drug combination discovery based on target network analysis
MOTIVATION Currently there are no curative anticancer drugs, and drug resistance is often acquired after drug treatment. One of the reasons is that cancers are complex diseases, regulated by multiple signaling pathways and cross talks among the pathways. It is expected that drug combinations can reduce drug resistance and improve patients' outcomes. In clinical practice, the ideal and feasible ...
متن کاملMultitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine−Coumarin Hybrids for the Treatment of Alzheimer’s Disease
Alzheimer’s disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-l...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره 23 شماره
صفحات -
تاریخ انتشار 2018